113. Massenspektren neuer Phloroglucide, insbesondere solcher mit Valerylseitenketten

von M. Lounasmaa, C.-J. Widén und T. Reichstein

State İnstitute for Technical Research (VTT), SF-02150 Otaniemi, Finland Department of Pharmacognosy, University of Helsinki Institut für Organische Chemie der Universität Basel

(21. II. 73)

Summary. Mass spectra of phloroglucinol derivatives recently isolated from African Dryopteris species are presented. Phloroglucides with *n*-valeryl side chain were found in these ferns for the first time. In the mass spectra they show strong peaks corresponding to loss of propene (C_3H_6) produced by *McLafferly* rearrangement, as shown in model compounds. Aside of the rottleron change (discussed formerly) this must be considered in order to avoid wrong interpretation, particularly when mass spectra are used to analyse mixtures of homologues, as usually present in the plants. If valeryl side chains are present other methods must be used therefore to measure the amount or show the absence of lower homologues with acetyl side chains.

Massenspektren haben sich für die Charakterisierung und Strukturermittlung natürlicher Phloroglucide (Lit. und Strukturen vgl. [1] [2]) als sehr nützlich erwiesen [3]. Sehr wertvoll sind sie auch zur Untersuchung von Mischkristallisaten, die aus mehreren schwer trennbaren Homologen bestehen, wie sie aus den Pflanzen sehr häufig erhalten werden. Um Fehlinterpretationen zu vermeiden, muss aber berücksichtigt werden, dass im Massenspektrometer gelegentlich auch unerwünschte thermische Reaktionen eintreten können; so ist bei zwei- und mehrkernigen Vertretern immer mit dem Eintreten der Rottleron-Umlagerung [3d] zu rechnen.

Kürzlich wurden in einer afrikanischen Dryopteris-Art erstmals auch natürliche Phloroglucide mit Valerylseitenketten $(V)^1$) beobachtet [2b], z.B. 12 und 21. Sie zeigen im Massenspektrum ebenfalls eine Besonderheit. Es tritt bei ihnen in merklichem Ausmass McLafferty-Spaltung [4, p. 155] ein (vgl. Fig. 2, 4, 5 und 6), die bei den «normalen» B-Derivaten¹) kaum in Erscheinung tritt ([3e] sowie Fig. 1) und bei den P- und A-Derivaten gar nicht eintreten kann.

Zur Illustration geben wir in den Fig. 1, 2, 3 und 4 die Spektren von vier einfachen Modellen, nämlich der Stoffe 1, 2 und 3, die nur einen Ring enthalten²) und die sich lediglich durch die Seitenkette voneinander unterscheiden, sowie der *n*-Valerylfilicinsäure (9). Alles sind synthetische, sicher einheitliche Präparate.

In den 3 Stoffen 1, 2 und 3 ist, in Übereinstimmung mit früheren Befunden [3], die α -Spaltung (s. Schema, Fragmentierung a) die bevorzugte Reaktion und führt in

Es ist üblich, die bisher bekannten Homologen nach der Länge ihrer Seitenkette als B = Butyryl-, P = Propionyl-, A = Acetyl-Derivate zu bezeichnen. Dementsprechend werden die n-Valerylderivate hier als V-Derivate bezeichnet.

²) Solche Phloroglucide mit nur einem Ring kommen in den Pflanzen nicht vor, sie stellen aber Bausteine der zwei- und mehrkernigen Phloroglucide dar und werden aus ihnen bei Abbaureaktionen erhalten.

allen drei Fällen zum Ion 4, das die stärkste Spitze liefert. Bei 9 ist das entsprechende Ion 8 merklich schwächer.

McLafferty-Umlagerung (s. Schema, Fragmentierung b), die bei 1 unter Verlust von Äthylen, bei 2 und 3 unter Verlust von Propen zu demselben Ion 5 (m/e 182) führt, ist nur bei 2 deutlich. Dies steht im Einklang mit früheren Befunden [4, p. 157] [3e], wonach diese Reaktion viel leichter eintritt, wenn ein sekundäres und nicht ein primäres H-Atom wandern muss. Durch diese Reaktion kann bei Valerylderivaten die Anwesenheit von Acetylderivaten vorgetäuscht werden. Dies ist besonders bei der Untersuchung von Mischpräparaten zu beachten. Auf die An- oder Abwesenheit von A-Derivaten ist dann mit Hilfe anderer Methoden (NMR.-Spektren, reduktive Spaltung) noch besonders zu prüfen.

Schliesslich zeigt das n-Valerylderivat 2 auch noch recht deutliche allylische Spaltung (s. Schema, Fragmentierung bei c) der Enolform 6 unter Bildung des Ions

m/e 195 (= 2-29). Beim Butyrylderivat 1 ist diese Spitze bei m/e 195 (= 1-15) merklich schwächer. Beim Isovalerylderivat 3 (bzw. der Enolform 7), bei dem nach der Fragmentierung c zwei verschiedene Methylgruppen unter Bildung des Ions m/e 209

Fig. 1. Massenspektrum³) von 2-Methyl-4-butyryl-phloroglucin (1), Smp. 166-167° (synthetisch [2b]), bei 70 eV, Temp. der Ionenquelle 130°. Versuchsweise Zuordnung: 210 = M; $195 = M - CH_3^{\circ}$; 182 = 5, 167 = 4.

Fig. 2. Massenspektrum³) von 2-Methyl-4-valeryl-phloroglucin (2), Smp. 149–151° (synthetisch [2b]), bei 70 eV, Temp. der Ionenquelle 130°. Versuchsweise Zuordnung: 224 = M; $195 = M - CH_3 \cdot CH_2^\circ$; 182 = 5; 167 = 4.

(3-15) abgespalten werden können, ist sie wieder deutlicher, aber immer noch schwach. Bei der V-Filicinsäure 9 (Fig. 4) liefern die Ionen M-·CH₃ und M-·C₂H₅ (Fragmentierung c) die stärksten Spitzen, das aus der *McLafferty*-Umlagerung stammende Ion **10** ist aber auch noch sehr stark vertreten.

³) Aufgenommen von A. Huhtikangas auf einem Perkin-Elmer 270 double focussing massspectrometer. Einlass-System direkt.

Fig. 3. Massenspektrum³) von 2-Methyl-4-isovaleryl-phloroglucin (3), Smp. 160–161° (synthetisch [2b]), bei 70 eV, Temp. der Ionenquelle 130°. Versuchsweise Zuordnung: 224 = M; $209 = M - \cdot CH_3^{e}$; $182 = 5^{b}$; 167 = 4.

Fig. 4. Massenspektrum³) von n-Valerylfilicinsäure (9), Smp. 90–92°, synthetisch [2b] bei 70 eV, Temp. der Ionenquelle 130°. Versuchsweise Zuordnung: 238 = M; $223 = M - CH_3$; $209 = M - C_2H_5$; 196 = 10; 181 = 8 und $10 - CH_3$; 171 = M - 67 [3e]; $168 = M - C_4H_6O$ [3e]; $154 = 11: 149 = 167 - H_2O$; $139 = 11 - CH_3$; 126 = 11 - CO [3e]; $112 = C_6H_6O_2$ [3e]; $111 = C_6H_7O_2$ [3e]; $97 = C_5H_5O_2$ [3e]; 85 = n-Valerylium-ion $C_5H_9O^+$; $70 = C_4H_6O = (CH_3), C-CO^+$ [3e].

In den Fig. 5 und 6 geben wir die Massenspektren von Flavaspidsäure (12) und Filixsäure (21) aus Dryopteris schimperana TR-3248 isoliert. In beiden Fällen handelt es sich um Mischungen von Homologen, die viel Valerylseitenketten enthalten. Durch reduktive Spaltung wurde festgestellt, dass höchstens Spuren von Acetylgruppen anwesend sind [2b]; auch in den NMR.-Spektren waren keine entsprechenden Signale sichtbar.

Das Spektrum der Flavaspidsäure (12) (Fig. 5) lässt sich gut deuten, wenn man annimmt, dass Zerfall nach den früher vorgeschlagenen [3] Fragmentierungen

12 Flavaspidsäure, Gemisch der Homologen¹) $VV = C_{26}H_{34}O_8 (474) = M1$ $PV und (VB) = C_{25}H_{32}O_8 (460) = M2$ $BB = C_{24}H_{30}O_8 (446) = M3$

c) und d) == Fragmentierung ohne
H-Wanderung führt vorwiegend zu
den Ionen 17 und 20,
18 und 19 werden nicht sicher beobachtet.

^{*)} In Präp. b, Smp. 75-82°/128-130° [2b] aus don späteren Fraktionen dor Chromatographie war der Anteil an V-Derivaten etwas kleinen.

Ein weiteres Massenspektrum desselben Stoffes wurde von Herrn Dr. H. Hürzeler im Physiklaboratorium der Ciba-Geigy AG, Basel, auf einem Varian CH7 Massenspektrometer bei 70 eV aufgenommen, wofür auch hier bestens gedankt sei. Es zeigte die Spitze bei m/e 446 und einige andere viel deutlicher als das hier reproduzierte. 6

Fig. 7. Massenspektrum³) von Methylen-bis-aspidinol (30) aus Dryopteris inaequalis TR-3247, Smp. 187-190° [2b], enthaltend die Homologen BB, BP und PP bei 75 eV, Temp. der Ionenquelle 140°. Versuchsweise Zuordnung: 460 = M1; 446 = M2; 432 = M3; 237 = 33 B; 236 = 32 B; 224 = 31 B; 223 = 33 P; 222 = 32 P; 221 = $236 - CH_3$; 210 = 31 P; 193 = 35; 181 = 34. Die Abwesenheit einer starken Spitze bei m/e 167 (Ion 4) zeigt, dass die Gruppe 1 nicht anwesend ist.

1142

a) b) c) und d) erfolgt, wobei b) und d) stark überwiegen. Bei a) und b) tritt jeweils H-Verschiebung ein, während c) und d) ohne solche erfolgen. Bei den letzteren lassen sich jeweils nur die Bruchstücke 17 und 20 sicher feststellen⁵). Das Spektrum ist auch mit den Resultaten der reduktiven Spaltung [2b] verträglich, wonach im Gemisch vorwiegend die Homologen VV und BV, neben wenig VB und BB vorhanden sein müssen. Dies zeigt sich im Spektrum vor allem beim Vergleich der Intensitäten der homologen Bruchstücke, die der linken und derjenigen, die der rechten Molekelhälfte entsprechen. Dabei ist aber zu berücksichtigen, dass die Intensität der Spitzen, die vom aromatischen Anteil stammen, immer stärker ist als diejenigen der alicyclischen Ringe [3c]. Unter den angewandten Aufnahmebedingungen sind Spitzen, die der *McLafferty*-Umlagerung der ganzen Molekel entsprechen (*m/e* 432, 418), nur sehr schwach sichtbar, sehr deutlich sind sie bei den Bruchstücken 20 V (237 \rightarrow 195) und 2 (224 \rightarrow 182). Auch hier sind analoge Spitzen der niederen Homologen (*m/e* 181 bzw. 168) erwartungsgemäss höchstens sehr schwach.

Für das Spektrum der Fig. 6 kann das früher aufgenommene Spektrum des reinen Filixsäure-BBB (Fig. 1 in [3d]) zum Vergleich dienen. Die fünf Spitzen im Bereich der höchsten Massen können den fünf Homologen VVV, VBV, VBB, BBB und BBP (inkl. BPB) zugeordnet werden. Die reduktive Spaltung des verwendeten Präparates konnte wegen Materialmangel zwar nicht durchgeführt werden. Sie wurde aber mit dem gesamten Rohfilicin aus der genannten *Dryopteris*-Art durchgeführt [2a]. Dabei zeigte sich, dass höchstens Spuren von Acetylgruppen und nur wenig Propionyl-Gruppen anwesend waren. Die im Massenspektrum beobachtete kleine Spitze bei m/e 654 stammt somit grösstenteils nicht aus einem niederen Homologen (A oder P), sondern entspricht vorwiegend der *McLafferty*-Umlagerung des VBV-Derivats. Auch die Spitze bei 668 kann teilweise aus der analogen Spaltung des VVV-Homologen stammen. Sehr deutlich ist wieder die Bildung Albaspidin (**22**) durch Rottleron-Umlagerung zu erkennen.

In den Fig. 7 und 8 geben wir die Spektren von Methylen-bis-aspidinol (**30**) und Trisaspidinol (**36**), die beide aus *Dryopteris inaequalis* isoliert wurden. Das erstere war schon früher aus *D. marginalis* erhalten worden, während Trisaspidinol einen neuen Stoff darstellt. Das Massenspektrum war neben dem Abbau [2b] für die Strukturabklärung massgebend. In beiden Fällen handelt es sich um Gemische der Homologen mit B- und P-Seitenketten (sowie teilweise einer Spur A).

LITERATURVERZEICHN1S

[1] A. Penttilä & J. Sundmann, J. Pharm. Pharmacol. 22, 393-404 (1970).

- [2] a) C.-J. Widén, G. Vida, J. v. Euw & T. Reichstein, Helv. 54, 2824 (1971); b) C.-J. Widén, R. B. Faden, M. Lounasmaa, G. Vida, J. v. Euw & T. Reichstein, Helv. 56, (1973); in Vorbereitung.
- [3] a) M. Lounasmaa, A. Karjalainen, C.-J. Widén & A. Huhtikangas, Acta chem. scand. 25, 3428 (1971); b) iidem, ibid. 25, 3441 (1971); c) iidem, ibid. 26, 89 (1972); d) M. Lounasmaa, C.-J. Widén & T. Reichstein, Helv. 54, 2850 (1971); e) M. Lounasmaa, Planta med. (im Druck).
- [4] H. Budzikiewicz, C. Djerassi & D. W. Williams, «Mass Spectrometry of Organic Compounds», Holden-Day, San Francisco 1967.

⁵) Die zwei anderen zu erwartenden Bruchstücke (hier als 18 (223) und 19 (237) formuliert) tragen entweder keine Ladung oder treten als Anionen auf oder ihre Anwesenheit wird durch isomere Ionen (20 B und 20 V) verdeckt.